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Synopsis  Wildlife face a number of extrinsic stressors, such as habitat loss, pathogen infections, and contaminant expo-
sure, which can increase the energy needed to maintain optimal health and survival. These multiple extrinsic stressors can
also occur simultaneously during intrinsically stressful life stages such as reproduction, migration, or hibernation. To fully
understand how to support healthy wildlife populations, we must quantify physiological and immunological phenotypes
across a variety of stressors. We pose a framework for conducting field studies to collect individual-level samples that can
be used for measuring physiological and immunological phenotypes as well as the potentially stressful intrinsic and extrin-
sic drivers of those phenotypes. We suggest that collaborative efforts should then be made to create broader, spatially coor-
dinated hypotheses for determining patterns of wildlife health under intrinsically stressful time periods and across extrin-
sically stressful landscapes. We provide an example and preliminary findings for this multi-stressor, collaborative, and spa-
tially coordinated approach with an ongoing study of North American bat health. Quantifying direct and critical measures
of wildlife health and identifying key intrinsic and extrinsic stressors that drive physiological and immunological pheno-
types will provide broad targets for conservation strategies and where and when those strategies should be prioritized in the
future.

Wildlife health encompasses the ability of wild animals ~ health can provide a direct view for how wildlife re-
to adapt to environmental change through physiolog-  spond and adjust to energetically costly changes in their
ical and immunological responses to abiotic and bi-  environments, such as emerging infectious diseases and
otic stressors (Deem et al. 2001; Acevedo-Whitehouse = human-induced land use change (Deem et al. 2001;
and Duffus 2009; Stephen 2014). Quantifying wildlife ~ Acevedo-Whitehouse and Duffus 2009; Stephen 2014).
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Physiological and immunological phenotypes under-
lie and can predict pathogen susceptibility, survival
and fecundity, and long-term population viability, all
of which are crucial to wildlife conservation (Acevedo-
Whitehouse and Duffus 2009). Multiple intrinsic and
extrinsic stressors can threaten wildlife health and sur-
vival (Munns 2006; Thiel et al. 2008; O’'Connor et al.
2009; Allen et al. 2011; Eidels et al. 2016; Hill et al. 2016;
McGuire et al. 2017). For example, North American
bats, such as Myotis lucifugus, infected with Pseudogym-
noascus destructans have increased torpid metabolic
rates and arousal frequencies, which can cause them to
starve during physiologically challenging periods, such
as winter hibernation (Reeder et al. 2012; McGuire et
al. 2017). How wildlife respond to intrinsic and extrin-
sic stress can additionally vary by individuals, species,
and the multiple landscapes they inhabit (Gervasi et
al. 2015; Schmitt et al. 2017; Becker et al. 2020, 2023).
To mitigate the impact of multiple intrinsic or extrin-
sic stressors on threatened species, conservation efforts
extend species protections to the land to ensure quality
habitats for species survival (United States 1983). How-
ever, population monitoring within protected lands
does not require direct measures of individual wildlife
health, nor does it account for the heterogeneity of sur-
rounding landscapes and habitats wildlife encounter
(Fahrig et al. 2011). We cannot fully understand how
to support healthy wildlife populations without directly
measuring physiology and immunology across varying
spatial features and environments. To overcome these
challenges, coordinating field studies that quantify these
phenotypes as critical measures of wildlife health can
identify the relative importance of many intrinsic and
extrinsic stressors and, thus, identify critical targets for
conservation strategies.

Wildlife endure multiple intrinsic and extrinsic stres-
sors throughout their lifetime that can alter their phys-
iology and immunity. Wildlife experience natural, in-
trinsic periods of physiological stress and increased en-
ergy expenditures, especially during reproduction and
migration (Wikelski et al. 2003; Richardson et al. 2018).
However, extrinsic stressors such as resource scarcity,
harsh abiotic conditions (e.g., winter or drought), habi-
tat loss, contaminant exposure, and pathogens can in-
flate energetic demands (Thiel et al. 2008; O’Connor
et al. 2009; Allen et al. 2011; Eidels et al. 2016; Hill
et al. 2016; McGuire et al. 2017; Holden et al. 2022;
Vaziri et al. 2024). Additionally, extrinsic stressors can
have compounding effects on wildlife by modifying the
physiological and immunological phenotypes that help
combat their effects and minimize infection risks across
diverse landscapes. For example, sewage water con-
tamination decreases circulating neutrophils and in-
creases lymphocytes in desert bats (Pipistrellus kuhlii)
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within a month of drinking contaminated water daily
(Pilosof et al. 2014). For amphibians, poor water qual-
ity may increase the presence of Batrachochytrium den-
drobatidis and thus increase the risk of chytridiomyco-
sis (Jacinto-Maldonado et al. 2023). Further, infection-
induced mortality could reduce wildlife population size
when pathogen transmission in polluted landscapes is
equal to or greater than in natural habitats (Sanchez et
al. 2020). While effects vary by individuals, species, and
context, the compounding effects of intrinsic and ex-
trinsic stressors could be detrimental to wildlife pop-
ulations. Here, we pose a framework and a call for
increased spatially coordinated monitoring in which
teams pair measurements of multiple stressors with
physiological and immunological biomarkers to build
a holistic understanding of wildlife health.

Measuring wildlife health

Individual-level responses to intrinsic and extrinsic
stressors can be energetically costly, potentially dis-
rupting allostasis (i.e., energy budgets; McEwen and
Wingfield 2003) and thus, overall health. When con-
sidering that both intrinsic and extrinsic stressors act
simultaneously on wildlife, compounding energy ex-
penditures from multiple physiological and immuno-
logical responses (i.e., allostatic load) can threaten an
individual’s survival (Beckie 2012; Seeley et al. 2022)
and increase risks associated with pathogen shedding
and transmission (Plowright et al. 2024). Multiple
physiological and immunological biomarkers are used
to measure the impact of stressors on wildlife allo-
static loads (e.g., energy expenditures [basal metabolic
rates, resting metabolic rates, torpid metabolic rates],
baseline glucocorticoid concentrations, white blood
cell counts [see example in Box 1], heat-shock pro-
teins; Edes et al. 2018). While researchers may mea-
sure different physiological or immunological biomark-
ers depending on project aims, laboratory capac-
ity, sampling logistics, and funding, incorporating di-
rect measurements of health in relation to allostatic
load is critical for linking hypothesized stressors to
phenotypes.

Spatial heterogeneities of wildlife health
and extrinsic stressors

Identifying the spatial drivers of physiological and im-
munological changes can inform an understanding
of how environmental features impact wildlife health
(Becker et al. 2020). For example, glucocorticoid con-
centrations are greater within human-disturbed land-
scapes for mammals globally compared to natural lands
(Mirante et al. 2025). There is spatial variation in North
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Box 1. We piloted a longitudinal project aimed at identifying intrinsic and extrinsic drivers of North Amer-
ican bat cellular immunity. We captured female bats (n = 55 across five species) in Tennessee, Oklahoma, and
Arizona in summer 2023 (A; Table S1). From each bat, we collected individual-level data and samples, including
(but not limited to) bat holding time, body mass, sex, reproductive status (intrinsic stressor), whole blood, and fur.
Using these samples, we quantified NL ratios (proxy for chronic stress) and micronuclei intensities (extrinsic stres-
sor) from blood smears, detected Bartonella spp. infections from whole blood (extrinsic stressor), and quantified
THg concentrations from fur (extrinsic stressor). We also determined species-specific foraging distances to calcu-
late foraging home range areas (Table S2) and used the US Geological Survey’s 2019 National Land Cover Database
(Dewitz and US Geological Survey 2021) to determine land use proportions available for foraging within those forag-
ing home range areas (used as buffers from capture locations). Land use proportions within species-specific foraging
home range areas were reduced to two PCA axes (extrinsic stressors): PC1 loaded negatively for developed lands
and positively for natural, barren lands, while PC2 loaded negatively for croplands and positively for forests and
shrubs (Table S3; Fig. S1). For preliminary analyses, we created 20 generalized linear models (GLMs) for NL ratios,
with each model containing a main effect of bat holding time as a precision covariate and either a single interaction
term of an intrinsic and extrinsic stressor or without an interaction term of those same variables (main effects only;
Table S4). These models thus considered both additive and interactive effects between individual-level and spatial
drivers. We compared GLMs using the Akaike information criterion corrected for small sample sizes (AICc). When
exploring preliminary results from the top two models (AAICc < 3.04), we found strong relationships between NL
ratios, intrinsic or extrinsic stressors, and holding time. NL ratios differed by reproductive status (B), showed po-
tential trends for increasing with micronuclei intensities (C), and showed potential trends for decreasing with PC1
(greater NL ratios associated with developed lands and lower NL ratios associated with natural, barren lands; D)
after adjusting for holding time. While the modest dataset from our pilot season limits our ability to draw strong
conclusions, and space and species identity are challenging to differentiate within pilot data, we still identified key
correlates (reproduction, genotoxic effects of pollutant exposure, and spatial features) of wildlife health (NL ratios).
This project expanded to four new sites in 2024 (in Illinois, Missouri, Colorado, and Wyoming), and the larger
individual- and site-level sample size should enable more robust inference with less confounding spatial and taxo-
nomic data and fewer influences of outliers. We will continue to spatially and taxonomically expand this study over
time within North American bats and encourage other researchers interested in participating in this project at their
spring/summer/fall field sites to contact the corresponding author (MCS).
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American bat body mass, fat, and energy requirements
for hibernation due to gradients of wintering tempera-
tures (Hranac et al. 2021). Additionally, house sparrow
(Passer domesticus) inflammatory responses vary by lat-
itude within and beyond their native range (Martin et
al. 2004; Becker et al. 2023). Regional land use fea-
tures also predict changes in wildlife physiology and
immunity. For example, cortisol levels in coyotes (Ca-
nis latrans) increase with land development across the
Chicago Metropolitan Area (Robertson et al. 2023), tree
swallows (Tachycineta bicolor) have greater bacterial
killing ability in their plasma with increasing farmland
intensity (Schmitt et al. 2017), and preliminary findings
from our group suggest neutrophil-to-lymphocyte (NL)
ratios vary with land use proportions within a species’
foraging area (Box 1).

Variations across individual-level physiological and
immunological phenotypes can be determined for spe-
cific environmental factors, such as site-specific pol-
lutants, including heavy metals, pesticides, and for-
ever chemicals. Neutrophil counts increase with to-
tal mercury (THg) concentrations in bat fur (Becker
et al. 2017); NL ratios vary with potential pesticide
exposure in Neotropical bats (Sandoval-Herrera et al.
2023); micronuclei intensities (genotoxic effects of pol-
lutant exposure) increase with environmental pollution
across many taxa (Fernandez et al. 1993; Naidoo et
al. 2015; Calao-Ramos et al. 2021; Sandoval-Herrera
et al. 2021), including our own multi-species bat data
(Box 1); microplastics alter immune gene expression
in crabs and corals (Liu et al. 2019; Bove et al. 2023);
and cortisol increases with PFAS pollution intensity in
fish (Schumann et al. 2024). These examples of spa-
tially correlated physiological and immunological phe-
notypes can also drive differences in pathogen trans-
mission and infection across landscapes (Hawley and
Altizer 2011). Additionally, the examples above provide
evidence that we have clear assay targets across vari-
ous wildlife species. Therefore, as wildlife physiologists
and ecoimmunologists, we are in a position to better
understand wildlife health ranging from population to
individual levels. Combining individual-level and spa-
tial drivers of wildlife health with appropriate measure-
ments of each could provide greater insights for de-
riving broader patterns of wildlife health heterogene-
ity and for characterizing infection risks associated with
those patterns.

Stressors impact wildlife health
simultaneously
Multiple intrinsic and extrinsic stressors may also

have interactive effects on wildlife physiological and
immunological phenotypes, although they are less
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frequently tested. Interactions between atrazine (her-
bicide) and environmental temperature are correlated
with varying physiological (i.e., body mass and fat, glu-
cocorticoid concentrations) and immune phenotypes
(i.e., IgM concentrations), as well as reproductive out-
comes in some lizards (Nie et al. 2023). Reef fish (Pin-
guipes brasilianus) at polluted sites have higher NL
ratios than reference sites, and these differences are
amplified during their reproductive season (Sueiro et
al. 2020). Higher-level interactions among stressors as
drivers to physiological and immune phenotypes are
challenging to measure and manipulate in the field.
However, building projects that collect comprehensive
samples (i.e., multiple samples from each individual
captured at a single time point) that measure both
health and specific stressors of interest could highlight
key interactions across intrinsic and extrinsic stressors
that drive broader patterns of wildlife health. Under-
standing these higher-level interactions could help us to
know when and where to apply conservation actions to
improve wildlife health and survival.

Due to the additive and potentially interactive effects
of stressors on wildlife allostatic load, it is critical we
recognize the importance of how multiple, simultane-
ous stressors can impact wildlife health across relevant
spatial scales. Many researchers have outlined the im-
portance of understanding how multiple extrinsic stres-
sors impact wildlife across heterogeneous landscapes
(Vinebrooke et al. 2004; Munns 2006; Ban et al. 2014;
Coté et al. 2016; Tekin et al. 2020; Simmons et al. 2021;
Pirotta et al. 2022). Additionally, it is important to in-
clude both intrinsic and extrinsic stressors when assess-
ing impacts to wildlife health, because the effects of in-
trinsic stressors may vary seasonally (for reproduction
examples, see Ruoss et al. 2019 and Box 1; for a migra-
tory example, see Voigt et al. 2010). There is a need for
frameworks that holistically address the data gaps for
how wildlife health is altered by many simultaneous in-
trinsic and extrinsic stressors.

A framework for building multi-stressor
wildlife health datasets

With accelerating human-induced global change, we
must build robust datasets reflecting wildlife expo-
sure to those ongoing changes. Therefore, we encour-
age more communication among researchers who have
similar wildlife monitoring goals (Mosher et al. 2020).
We recommend more comprehensive sampling in the
field across projects to identify broader, spatially coor-
dinated patterns of wildlife health under multiple stres-
sors (Fig. 1). While comprehensive sampling may not be
necessary for some individual projects, communicating
with other researchers who could sample target species
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Spatial Scale

Fig. | We recommend wildlife researchers communicate with each other across similar projects (far left) to collect comprehensive
multi-purpose samples from each individual animal at long-term field sites (middle left). Collaborating across spatially coordinated projects
would then allow for analyses at the spatial scale of choice (middle right) to summarize broad patterns of wildlife health under multiple
stressors and help target conservation needs. These spatially coordinated projects within research groups could further lead to larger
collaborations across phyla (far right) and feedback into identifying comprehensive phylogenetic and spatial patterns of wildlife health and
conservation needs. Icons used were free downloads from the Noun Project, and created by the following artists: bat by pcymk; squirrel,
owl, hummingbird, turtle, and iguana by Valerie Lamm; salamander by Yu luck; frog by Krisna Purpa; fish by Puspa Kusuma; mussel by Melissa
Maury; buildings by meilia miftah choirun niswah, Denicon, and Jan Niklas Prause; global map outline by Dmitrii Lagunov; USA outline by
Aidan Stonehouse; USA states outline by Joel Wisneski; fur by Saeful Muslim; blood by symbolic; sample tube by Bloger indo; swab by

myiconfinder; biopsy punch Agan24; and scissors by inmyheart.

in a similar manner in the field can (1) cover more
ground spatially and financially across both projects
and (2) build collaborative capacity across interdisci-
plinary teams.

Within these sampling collaborations, researchers
will need to determine the scales of spatial coordi-
nation that are important and cost-effective for all
groups. For example, if collaborators chose to sam-
ple a single species with a broad geographic range,
site specifications may be a lower priority compared
to capturing across broad latitudinal or longitudinal
gradients. This broad spatial approach is necessary to
capture sufficient landscape variation in stressors for
downstream analyses (Becker et al. 2020). For sampling
widely distributed species across a broad spatial scale,
capture rates may vary by region, thereby imposing
additional personnel and capture effort costs for groups
in areas with lower capture rates. However, if those
groups are already sampling in such sites for their
individual projects, contributing to these collaborative
samples could maximize the personnel time spent in
the field and allow benefits to outweigh costs. There
are gradients of trade-offs related to sampling across
different spatial scales, and collaborative groups will
need to make decisions about what trade-offs benefit
their shared research questions best.

Researchers may also prioritize different types of
samples for landscape-scale collaborative projects de-
pending on their research questions. Collecting com-
prehensive samples across projects that also serve mul-
tiple purposes can reduce the monetary costs of sam-
pling and the number of animals that need to be sam-
pled in the future. For example, whole blood can be
used for pathogen detection and intensity, blood smears

to quantify cellular immunity and micronuclei intensi-
ties, and can be spun down for plasma glucocorticoids,
contaminant concentrations, and other immunological
assays (e.g., immunoglobulin quantification, proteomic
immune profiles; Table 1). Fur, feces, urine, and other
tissue samples (e.g., a superficial biopsy punch) can be
used for contaminant and glucocorticoid quantification
(Table 1). Additionally, feces, urine, and skin, oral, and
rectal swabs can be used for the detection of multiple
different pathogens of interest (Table 1). Multi-use sam-
ples such as those given above can all be collected non-
lethally, requiring small volumes or amounts of each tis-
sue, thereby also preserving the welfare of wildlife. Col-
laborative sampling also increases the cost-effectiveness
of fieldwork across groups (e.g., fewer travel and per-
sonnel costs to collect samples across multiple sites,
lower supply costs). Scaling up collaborative sampling
across broadly distributed taxa or species would provide
greater insights into the drivers of wildlife health than
possible through any one research group. Such collabo-
rative datasets would allow us to broadly identify when
and where wildlife conservation actions may be needed
across phyla. It is crucial to consider the value of the in-
formation to be gained from comprehensive sampling
in current and future wildlife health projects.

A working example for quantifying
wildlife health under multiple stressors

To understand broad patterns for wildlife health, we pi-
loted a longitudinal project using a broad spatial and
multi-stressor approach (Box 1). We focus on North
American bats, quantifying bat cellular immunity in
relation to an intrinsic stressor of reproduction and
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Table | Examples of tissue samples that can be collected non-lethally and their multiple uses for measuring individual-level physiological,

immunological, and environmental biomarkers.

Tissue Measure

Example reference

Whole blood Pathogen/parasite detection

White blood cell counts

Micronuclei (genotoxic effects of pollutants)

Plasma or sera (from whole
blood)

Proteome profiles

Bacterial killing ability

Immunoglobulin concentrations (e.g., IgG, IgM)

Glucocorticoid concentrations

Contaminant concentrations
Fur, feathers, or scales Glucocorticoid concentrations
Contaminant concentrations
Saliva Pathogen detection

Glucocorticoid concentrations

Feces Pathogen/parasite detection

Immunoglobulin concentrations (e.g., I1gG, IgM, etc.)

Glucocorticoid concentrations
Contaminant concentrations
Urine Pathogen detection
Glucocorticoid concentrations
Contaminant concentrations

Skin Pathogen detection

Lilley et al. (2017); Vicente-Santos et al. (2023a); Becker et
al. (2025)
Becker et al. (2021); Humphries et al. (2025)

Sandoval-Herrera et al. (2023)
Vicente-Santos et al. (2023b); Minayo Martin et al. (2025)

Field et al. (2023)

Costantini et al. (2019)

Glucs et al. (2018); Field et al. (2023)

Jessup et al. (2010)

Glucs et al. (2018); Laberge et al. (2019)

Albert et al. (2021); Simonis et al. (2025)

Becker et al. (2022)

Verspeek et al. (2021); Montgomery et al. (2022)

Ferreira et al. (2021); Becker et al. (2022); Bennett et al.
(2025)
Ferreira et al. (2021)

Harper and Austad (2000); Glucs et al. (2018)
Simonis et al. (2025)

Seidlova et al. (2021)

Verspeek et al. (2021)

Shinya et al. (2022)

Bernard et al. (2015), (2017); Luciani et al. (2022)

extrinsic stressors of infection, contaminant exposure,
and land use. In doing so, we provide proof of con-
cept in identifying key individual-level and spatial stres-
sors that may impact wildlife health. For our project,
we chose to not focus on a particular species but in-
stead have prioritized sampling across a broad spatial
scale, targeting collaborators that were already collect-
ing needed samples or who required training to col-
lect such samples to benefit their individual projects. As
this specific project continues over multiple years, we
will expand sampling and use this approach to identify
patterns for where and when bat conservation action is
needed across species. This broad attempt at gaining a
holistic view of wildlife health under multiple stressors
can provide a roadmap for similar projects in the future
and across other taxa at relevant spatial scales. Further,
as others adopt the same approach, such as our exam-
ple, larger collaborative efforts could bring together re-
sources and similar comprehensive sample stores across
taxa to identify global patterns for wildlife health.

Conclusion

In conclusion, taking a broad and multi-stressor ap-
proach to quantifying wildlife health can help iden-
tify predictors of physiological and immunological

phenotypes across space, thereby helping to target
drivers of pathogen dynamics and conservation risks
across species. We call for wildlife researchers to
use similar collaborative and spatially coordinated ap-
proaches for collecting comprehensive samples from in-
dividual animals, with the goal of using those samples
in multiple ways and applications (e.g., contaminant,
physiology, immunology, infection) to gain more holis-
tic views of wildlife health. We highly encourage col-
laborative efforts and the creation of new longitudinal
projects across taxa with future goals for understanding
broad patterns in wildlife health under multiple stres-
sors.
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